No. 109 (3/01) CPPS

THE WORLD CURRENCY UNIT: CAN IT WORK?

by

Professor Lok-sang Ho

Lingnan University
Hong Kong
The World Currency Unit: Can it Work?

Professor Lok-sang Ho

January 2001
© Lok-sang Ho

Professor Lok-sang Ho is the Head of Department of Economics and Director of Centre for Public Policy Studies, Lingnan University, Hong Kong.

Centre for Public Policy Studies
Lingnan University
Tuen Mun
Hong Kong
Tel: (852) 2616 7432
Fax: (852) 2591 0690
Email: cpps@LN.edu.hk
http://www.LN.edu.hk/cpps/

CAPS and CPPS Working Papers are circulated to invite discussion and critical comment. Opinions expressed in them are the author’s and should not be taken as representing the opinions of the Centres or Lingnan University. These papers may be freely circulated but they are not to be quoted without the written permission of the author. Please address comments and suggestions to the author.
The World Currency Unit: Can it Work?

Lok Sang Ho*
Center for Public Policy Studies & Economics Department
Lingnan University

Abstract:

This paper uses the World Currency Unit framework of Ho (2000) to consider the feasibility and the benefits for a country to link its currency to the WCU. It also throws light on the workability of “global bonds” denominated in the WCU. Empirical data from Hong Kong, Japan, the United States, the UK, and South Korea are used. The data suggest that a real exchange rate concept that can be compared across nations can be built on the WCU and is a useful explanatory variable for real exports. A country that pegs its currency to the WCU is also likely to enjoy lower and more stable real interest rates, less fluctuations in competitiveness, and lower inflation. A WCU-exchange standard among smaller countries, and independent monetary policy among the key countries constituting the WCU, appear to be a feasible option that will bring the world closer to monetary and capital market integration.

JEL Number: E44, F33, F14

* This paper was presented at the CEANA session of the AEA meeting in New Orleans in January 2001 and an earlier version was presented in the HKEA meeting. Thanks are due to Michael Devereux and Herbert Grubel for their comments on early versions of the paper. The able research assistance rendered by Gary Wong is gratefully acknowledged.
Are present international monetary arrangements optimal? My answer is no. There is a missing ingredient in the international monetary system. The missing factor is a stable world currency. Until such a facility is created, the existing arrangements, while likely to continue, will be, at best, second best.

Robert A. Mundell, 1995

1. Introduction

Mundell (1995) maintained that having a common world currency will be the best solution to the world’s international monetary problems. Economists, however, though sharing the view that having a common world currency would facilitate trade and investment, generally recognize that a common world currency that is not based on gold or some other recognized commodity standard would be difficult to implement. On the other hand, since the value of gold is not stable, few economists take return to the gold standard seriously.

Taking the hint from Fisher (1913), Shiller (1998), Ho (2000) proposed a unit of account that offers the prospect of being truly stable in value. Named the World Currency Unit (WCU), it promises to be a superior alternative to gold as a currency standard. Although it is not meant to be the basis for a common world currency throughout the world, it brings the world one step closer to that first-best world envisaged by Mundell. Conceptually the idea of a WCU dates back to Irving Fisher, who had urged the introduction of a stable real value unit of account as early as 1913. The concept was explored at length by Warren Coats (1994), but a workable idea was yet to be worked out.

1 Frankel and Rose (1996) argue that economic integration, in particular monetary integration, would enhance trade links and thus cause a higher correlation of business cycles across nations. Countries may therefore realize greater benefit than may be envisaged prior to joining a monetary union.

2 See Macesich (1999) for a discussion of the various options, including a return to the gold standard.
Ho suggested using a basket of goods and services at some base year to be the basis of the unit. This basket should be representative of world output. This composite representative output consists of the GDPs of the key economic zones in the base year. The five economic zones include the United States, the Euro zone, Japan, Canada, and Australia. Since the GDPs of these zones are priced in different currencies, they must be converted into a common currency for summation. The total value, in US dollars, is scaled down to equal US$100 during the base year.

Let Q_{i0} be the GDP of country/zone i in base year 0. Thus in the base year:

$$1 \text{ WCU} = \lambda \sum Q_{i0} \cdot e_{i0} = \text{US$100}$ \quad [1]$$

where λ is the scaling factor

- i is any of the five major economies
- e_{i0} is the exchange rate converting one unit of the currency of i into US$ in base year 0.

The value of this basket in terms of the US dollar, and for that matter any currency, will change over time, but as long as we have defined the unit clearly, then no matter how the nominal value in terms of a currency changes, it still embodies the same composite real good. Over time, Q_{i0} in current domestic prices may increase because of inflation. Currency i may also appreciate against the US dollar. Either way, other things being equal, the nominal value of the WCU basket in US dollars will increase, but it will buy the same composite real good. Figure 1 shows the changes in the nominal value of the WCU, computed using IMF and OECD statistics, from 1983 to 1999. A caveat must be added though. In revaluing the WCU basket, I use the consumer price indices of the different countries/zones, even though in principle GDP deflators would have been more appropriate. I do this because the GDP deflators are usually available after a relatively long lag. Since the WCU is intended to be a unit of account ready to be used on a day-to-day

3 These economic zones are representative in that they comprise the world's major industrial zones as well as major producers of primary goods.
basis, for practical reasons CPIs are used instead of GDP deflators in deriving the current values of the unit.

Figure 1: Value of the WCU in U.S $ 1983-1999

This paper tries to apply this framework to actual data, and thus assess the implications of a country trying to link its currency to the WCU. There are obviously a number of difficulties in trying to do this. Quite apart from the CPI/ GDP deflator issue that we touched upon just now, the world would have been different if the WCU had been used as a unit of account and if some countries had linked their currencies to the WCU, to the extent that the nominal value of the WCU itself might well have been quite different. Expectations, too, would have been quite different to the extent that market behavior could have been quite different. Nevertheless, the best we can do is to use the actual data as we know them today. I shall use such data to derive comparable indices of real exchange rates and real interest rates across different currencies. Simulations based on parameters estimated with actual data will not predict accurately what would have happened had a country linked its currency with the WCU. These considerations, however, should not affect the conclusion that a WCU-link will engender greater stability. Indeed, if simulations point to such a conclusion, this conclusion is likely to be even
stronger in the real world since capital flows are expected to be less volatile in a world with financial instruments denominated in the WCU.

In the next section I shall compute comparable real exchange rate indices. In the Section 3 I shall compute comparable real interest rate indices. Section 4 will discuss the implications of linking a currency with the WCU and sum up the paper.

2. Computing Comparable Real Exchange Rates

The definition of the WCU allows us to define the standard real exchange rate for some currency A as:

\[
\frac{\text{CPI in Country A} \times \text{Price of A's Currency in US dollars}}{\text{Price of WCU in US dollars}} \quad [1]
\]

The numerator in [1] shows the price level in country A in US dollar terms. The denominator shows the price level of the key economic zones of the world in a composite way in US dollar terms. If the price level in Country A rises by 1 per cent, while the exchange rate and nominal value of the WCU in US dollars remain unchanged, Country A will lose competitiveness relative to others. Similarly, if the price level in Country A stays put, but the currency has appreciated against the US dollar at the same time as the price of the WCU remains unchanged, Country A’s competitiveness also suffers. Finally, if the numerator remains unchanged but the price of the WCU in US dollars rises, either because of higher inflation elsewhere or because of currency appreciation among WCU constituent countries, Country A’s competitiveness will have improved.

\[4\]

Alternatively, it can also be defined as:

\[
\frac{\text{CPI in Country A}}{\text{Price of WCU in A's currency}}
\]
Based on this index of the real exchange rate, and regressing the exports of a trading country/region against this index of the real exchange rate and the real GDP of OECD countries, we can see that the real exchange rate index is fairly robust in explaining exports performance. In the case of Hong Kong, because exports to China (mainland) are quite important and yet China up till 1994 was on a dual exchange rate system and even today its currency is not fully convertible, it makes sense to take exports to China out. Table 1 shows the results.

Table 1. Dependent Variable: HKTXRY (Hong Kong’s Total Exports less Exports to China, year-on-year change) -- 1985 Q1 to 1999 Q3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>3.9564</td>
<td>0.73159</td>
</tr>
<tr>
<td>HKRERY</td>
<td>-0.14478</td>
<td>-2.7759***</td>
</tr>
<tr>
<td>HKRERY(-1)</td>
<td>-0.23693</td>
<td>-3.2125***</td>
</tr>
<tr>
<td>HKRERY(-2)</td>
<td>-0.27646</td>
<td>-3.9580***</td>
</tr>
<tr>
<td>HKRERY(-3)</td>
<td>-0.26337</td>
<td>-4.0306***</td>
</tr>
<tr>
<td>HKRERY(-4)</td>
<td>-0.19766</td>
<td>-1.7105*</td>
</tr>
<tr>
<td>OCGDPVRY(-1)</td>
<td>2.5257</td>
<td>2.0338**</td>
</tr>
</tbody>
</table>

R-bar squared = 0.79876
DW-statistic = 2.3203

Notes: 1) Sum of the “Almon lag” coefficients for: HKRERY
Coefficient : -1.119
t-ratio : -4.320***

2) AR(1) procedure was used to adjust for serial correlation.

*** indicates statistical significance at 1% level
** indicates statistical significance at 5% level
* indicates statistical significance at 10% level

In this equation, Hong Kong’s total exports to destinations other than the Mainland are regressed against the rate of change of the real exchange rate and the rate of growth of OECD countries. The real exchange rate effect is subject to lags. It can be seen that all coefficients carry the right sign and are statistically significant. According to the equation a 10 per cent appreciation in the real
exchange rate will reduce real exports to countries other than China by up to 11 per cent after 4 quarters.

If the Hong Kong dollar had been linked to the WCU, we would expect that prices in Hong Kong would have been much more stable. Since the WCU by definition has constant purchasing power over the composite GDP “good,” the HK dollar would also likely to have constant purchasing power in Hong Kong. Using alternative inflation assumptions of 0 per cent, 1 per cent, and 2 per cent, the predicted export performance is shown in Figure 2. We can see that exports growth would have been much more stable.

Evidence in the robustness of the WCU as a unit of constant purchasing power can be derived from applying the formula for the real exchange rate based on equation [1] and testing its explanatory power for exports for other countries. Table 2 to Table 5, computed for the United Kingdom, the United States, Japan, and Korea, clearly show that the coefficients on the real exchange rate variable thus defined are always statistically significant and always carry the right sign. Although real exchange rate movements appear to have smaller and statistically less significant effects on real exports for these countries than for Hong Kong, the reason may be that we have
not allowed for special factors that affected the particular countries as we did for Hong Kong when we subtracted exports to Mainland China from total exports. Another example of such special factors is that in (unreported) regressions done on Indonesia, we found that subtracting US$-denominated oil exports would improve the coefficients significantly.

Table 2. Dependent Variable: UKEXPVRY (UK’s Export Volume Index, year-on-year change) -- 1985 Q2 to 1999Q3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>0.21824</td>
<td>0.0777</td>
</tr>
<tr>
<td>UKRERY</td>
<td>-0.03865</td>
<td>-1.4480</td>
</tr>
<tr>
<td>UKRERY(-1)</td>
<td>-0.06122</td>
<td>-1.5990</td>
</tr>
<tr>
<td>UKRERY(-2)</td>
<td>-0.06769</td>
<td>-1.8338*</td>
</tr>
<tr>
<td>UKRERY(-3)</td>
<td>-0.05807</td>
<td>-1.7674*</td>
</tr>
<tr>
<td>UKRERY(-4)</td>
<td>-0.03235</td>
<td>-0.60419</td>
</tr>
<tr>
<td>OCGDPVRY(-1)</td>
<td>1.9324</td>
<td>2.0334**</td>
</tr>
</tbody>
</table>

R-bar squared = 0.42874
DW-statistic = 2.0804

Notes: 1) Sum of the “Almon lag” coefficients for: UKRERY
 Coefficient: -0.2580
 t-ratio: -1.913*

2) AR(1) procedure was used to adjust for serial correlation.

** indicates statistical significance at 5 % level
* indicates statistical significance at 10% level
Table 3. Dependent Variable: USEXPVRY (The United States’ Export Volume Index, year-on-year change) -- 1985 Q2 to 1999 Q3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>-0.95394</td>
<td>-0.27316</td>
</tr>
<tr>
<td>USRERY (-1)</td>
<td>-0.03231</td>
<td>-0.89490</td>
</tr>
<tr>
<td>USRERY (-2)</td>
<td>-0.07866</td>
<td>-1.4183</td>
</tr>
<tr>
<td>USRERY (-3)</td>
<td>-0.09269</td>
<td>-1.9755**</td>
</tr>
<tr>
<td>USRERY (-4)</td>
<td>-0.10063</td>
<td>-1.8527*</td>
</tr>
<tr>
<td>USRERY (-5)</td>
<td>-0.10248</td>
<td>-1.0153</td>
</tr>
<tr>
<td>OCGDPVRY</td>
<td>1.1607</td>
<td>1.5736</td>
</tr>
<tr>
<td>OCGDPVRY (-1)</td>
<td>1.2654</td>
<td>2.2823**</td>
</tr>
<tr>
<td>OCGDPVRY (-2)</td>
<td>0.31413</td>
<td>0.29178</td>
</tr>
</tbody>
</table>

R-bar squared = 0.59680
DW-statistic = 1.8605

Notes: 1) Sum of the “Almon lag” coefficients for: USRERY
 Coefficient : -0.4653
 t-ratio : -2.107**

2) Sum of the “Almon lag” coefficients for: OCGDPVRY
 Coefficient : 2.740
 t-ratio : 2.391**

3) AR(1) procedure was used to adjust for serial correlation.

** indicates significance at 5% level
* indicates significance at 10% level

Table 4. Dependent Variable: JEXPVRY (Japan’s Export Volume Index, year-on-year change) -- 1985 Q2 to 1999 Q3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>-3.4879</td>
<td>-1.5298</td>
</tr>
<tr>
<td>JRERY (-2)</td>
<td>-0.01624</td>
<td>-0.56666</td>
</tr>
<tr>
<td>JRERY (-3)</td>
<td>-0.03012</td>
<td>-0.89457</td>
</tr>
<tr>
<td>JRERY (-4)</td>
<td>-0.04165</td>
<td>-1.6601*</td>
</tr>
<tr>
<td>JRERY (-5)</td>
<td>-0.05084</td>
<td>-0.94593</td>
</tr>
<tr>
<td>OCGDPVRY (-1)</td>
<td>1.0544</td>
<td>1.9095*</td>
</tr>
<tr>
<td>OCGDPVRY (-2)</td>
<td>1.0861</td>
<td>2.7342***</td>
</tr>
<tr>
<td>OCGDPVRY (-3)</td>
<td>0.09508</td>
<td>0.12424</td>
</tr>
</tbody>
</table>

R-bar squared = 0.50560
DW-statistic = 1.9654
Notes: 1) Sum of the “Almon lag” coefficients for JRERY
 Coefficient : -0.1388
 t-ratio : -1.660*
2) Sum of the “Almon lag” coefficients for OCGDPVRY
 Coefficient : -2.23
 t-ratio : 2.979***
3) The AR(1) procedure was used to adjust for serial correlation.

*** indicates significance at 1 % level
** indicates significance at 5 % level
* indicates significance at 10% level

Table 5. Dependent Variable: KEXPVRY (Korea’s Export Volume Index, year-on-year change) -- 1984 Q4 to 1999 Q3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>4.2562</td>
<td>0.73417</td>
</tr>
<tr>
<td>KRERY</td>
<td>-0.12108</td>
<td>-1.2364</td>
</tr>
<tr>
<td>KRERY(-1)</td>
<td>-0.14223</td>
<td>-1.4526</td>
</tr>
<tr>
<td>OCGDPVRY</td>
<td>3.0553</td>
<td>1.6193</td>
</tr>
</tbody>
</table>

R-bar squared = 0.33912
DW-statistic = 2.1432
Notes: The AR(1) process was used to adjust for serial correlation.
For this equation the Almon distributed lag structure was not used.

3. Real Interest Rates Based on the WCU

The definition of the WCU also allows us to calculate what I call the real WCU interest rate for any country. This is an attempt to translate the domestic interest rate to a globally comparable interest rate, so that we will have a better idea as to how costly it is for businesses in different countries to borrow. The fact is that even though a country may have a domestic interest rate that is low in nominal terms, in real terms and in comparison to other countries the cost of borrowing may not be low at all, if the currency is appreciating rapidly. For similar reasons, a country whose currency is linked to a strong currency may face back-breaking real cost of
borrowing. To convert a domestic interest rate into a WCU interest rate, I adopt the formula:

\[
\left\{ \frac{\left[(1+r) \times \text{WCUpHKD}_{t+4} \right] - \text{WCUpHKD}_t}{\text{WCUpHKD}_t} \right\}
\]

where \(r \) is the domestic nominal interest rate, \(\text{WCUpHKD}_{t+4} \) is the price of the local currency in terms of the WCU four quarter from the time a HK dollar is borrowed, so the numerator represents the net interest in WCU units. The denominator is the value of the original HK$1 loan in WCU units. The ratio gives the HK dollar interest rate in WCU terms. This real interest rate, based on the WCU concept, is an internationally comparable real interest rate, since a similar comparable rate can be computed for every currency. From Table 2 we can see that both the real exchange rate and the real interest rate carry statistically significant coefficients in explaining private sector aggregate demand. The real interest rate for H.K. in WCU terms, \(\text{HKWCURY} \), is calculated by converting the interest on a HK dollar into WCU units a year ahead and dividing by the principal of one HK dollar expressed in WCU units. The dependent variable is change in Hong Kong’s GDP minus government expenditures and public construction. The latter is taken out because of its exogenous nature. The Almon lag structure is assumed for the two explanatory variables, the real exchange rate (HKRERY), and the real interest rate (HKWCURY). The coefficients are found to be highly significant and carry the right sign. According to the estimated coefficients a one per cent rise in the WCU real interest rate will reduce private sector demand by 1.37 per cent after five quarters.
Table 6. Dependent Variable: NETGDPRY (Hong Kong GDP less government expenditure and public construction, year on year change) -- 1984 Q2 to 1998 Q4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>17.138</td>
<td>3.6177***</td>
</tr>
<tr>
<td>HKRERY(-1)</td>
<td>-0.08522</td>
<td>-2.4356**</td>
</tr>
<tr>
<td>HKRERY(-2)</td>
<td>-0.12992</td>
<td>-2.6439***</td>
</tr>
<tr>
<td>HKRERY(-3)</td>
<td>-0.13412</td>
<td>-2.9921***</td>
</tr>
<tr>
<td>HKRERY(-4)</td>
<td>-0.09782</td>
<td>-2.6877***</td>
</tr>
<tr>
<td>HKRERY(-5)</td>
<td>-0.02101</td>
<td>-0.31120</td>
</tr>
<tr>
<td>HKWCURY(-1)</td>
<td>-0.21925</td>
<td>-1.7640*</td>
</tr>
<tr>
<td>HKWCURY(-2)</td>
<td>-0.34234</td>
<td>-1.9777**</td>
</tr>
<tr>
<td>HKWCURY(-3)</td>
<td>-0.36927</td>
<td>-2.3234**</td>
</tr>
<tr>
<td>HKWCURY(-4)</td>
<td>-0.30003</td>
<td>-2.0074**</td>
</tr>
<tr>
<td>HKWCURY(-5)</td>
<td>-0.13464</td>
<td>-0.47165</td>
</tr>
</tbody>
</table>

R-bar squared = 0.79121 DW-statistic = 1.5667

Notes: 1) Sum of the “Almon lag” coefficients for HKRERY: -0.4681
 t-ratio : -3.076***

2) Sum of the “Almon lag” coefficients for: HKWCURY: -1.366
 t-ratio : -2.348**

3) The AR(1) procedure was used to adjust for serial correlation.

*** indicates significance at 1 % level
** indicates significance at 5 % level
* indicates significance at 10% level

Under alternative assumptions about the WCU interest rate and the assumption that Hong Kong’s real exchange rate is stable, Hong Kong’s private sector demand inclusive of exports, would have stabilized between 8.9 per cent and 13.0 per cent, depending on the assumption about domestic inflation rate and the real interest rate. Swings in aggregate demand would have been reduced compared to the predicted growth of net GDP. Figure 4 shows that overheating in 1986 and 1987 would have been avoided, as would the economic troughs in 1985 and 1998. The model also suggests that there may
be other reasons to explain the recession in 1998, since the “predicted net GDP” for that year was still positive.⁵

![Figure 4.](image)

Figure 4. Actual, and predicted private sector GDP growth (year-on-year change) under US dollar & WCU links

- Actual
- Predicted, US-dollar link
- Predicted, WCU-link (3% inflation, 5% interest rate)
- Predicted, WCU link (1.5% inflation, 4% interest rate)
- Predicted, WCU link (0% inflation, 3% interest rate)

Sources: Based on Table 6.

4 Conclusions

The idea of the WCU as discussed in this paper in important ways answer the call made by Mundell (1995) for a “hard SDR” that would protect asset holders against the inroads of inflation. In particular, it addresses the problem, pointed out by him, that reflating the soft SDR by the average rate of inflation of SDR countries would create a distortion in so far as they do not reflect the relative sizes of the national GDPs (pp.490-491).

This paper suggests that linking a currency with the WCU has many potential benefits. The WCU is a unit of constant purchasing power. Currencies linked to the WCU can therefore be expected to engender very low inflation. Because of this characteristic and the fact that it is indirectly linked to several major international currencies at the same time, exchange risks will be reduced for investors who

⁵ For a discussion of other explanations for Hong Kong’s unprecedented recession in 1998, see Ho (2001), Chapter 18.
holds assets in countries that have adopted a WCU link, and for investors with assets denominated in these currencies. Countries with currencies linked to the WCU will have more stable real exchange rates, and can also expect to enjoy lower real interest rates.

Empirical testing using the WCU concept in calculating real exchange rates and real interest rates suggest that the concept is eminently robust and workable. It can be inferred that debt instruments denominated in the WCU will be attractive to savers. As Ho (2001) argues, the formation of Japan’s asset price bubble in the late 80s and its subsequent burst in the 90s can be traced to the lack of a reliable savings instrument. Exactly because there was no investment vehicles denominated in the WCU at the time, Japanese savers had been compelled to invest in already overpriced assets at home and to accept the risks of huge exchange losses from their overseas investments. The Asian Financial Crisis may also have been avoided if, instead to linking to the US dollar, Asian currencies had been linked to the WCU.

The design of the WCU allows all countries other than the five named to adopt a WCU-exchange standard but does not allow the five named countries/zones to do so. This is however an advantage rather than a disadvantage. Mundell had feared that “the creation of a world currency would confer power on an international bureaucracy, and the major powers may not be willing to take such a step.” (p.491) The design of the WCU exactly avoids the need for such a powerful international bureaucracy. All that is required is an ongoing computation of the nominal values of the WCU based on a known formula using official statistics. The five named countries/zones will continue to have their independent monetary policy, implying that their mutual exchange rates will fluctuate. Other countries that maintain a WCU-exchange standard will continue to have their own national currencies, but these currencies will be tied to the WCU. Still other countries may do what they want with their exchange rate regimes, depending on their own circumstances. All countries, those named among the five as well as others, can issue debt instruments denominated in the WCU. This way, the world’s capital market will be much better integrated, and all countries can maintain sovereignty in the sense that they are totally free to adopt a WCU-exchange standard or not.
References

Data Sources:

Hong Kong Census and Statistics Department. “Hong Kong Monthly Digest of Statistics”, various issues.

OECD, Quarterly National Accounts database.
List of Variables and their Descriptions

HKCPI : HK CPI, 1990=100
HKRE : HKCPI/HKWCI
HKRERY : (HKRE-HKRE(-4))/HKRE(-4)*100
HKTX : HK Total Export less Total Export to China at 1990 prices
HKTXRY : (HKTX-HKTX(-4))/HKTX(-4)*100
HKWC : The price of WCU in HK dollar
HKWCI : The price of WCU in HKD Index 1990=100 : HKWC/((744.8+751.5+787.5+832.2)/4)*100
HKWCURY : WCU / HKD interest rate (Year on year)
\[
\left\{\frac{[\left[(1+r) \times \text{WCU}_{\text{per HKD}_{t+4}}\right] - \text{WCU}_{\text{per HKD}_t}}{\text{WCU}_{\text{per HKD}_t}}\right\}
\]
JCPI : Japan CPI index 1995=100
JEXPV : Japan Export Volume Index 1995=100
JEXPVRY : (JEXPV-JEXPV(-4))/JEXPV(-4)*100
JRE : JCPI/JWCI
JRERY : (JRE-JRE(-4))/JRE(-4)*100
JWC : The price of WCU in Yen
JWCI : The price of WCU in Yen, Index, 1995=100 : JWC/((10898+10841.5+12273.8+12675.7)/4)*100
KCPI : Korea CPI, index, 1995=100
KEXPV : Koera Export Volume Index 1995=100

KEXPVRY : (KEXPV-KEXPV(-4))/KEXPV(-4)*100

KRE : KCPI/KWCI

KWC : The price of WCU in Won

KWCI : The price of WCU in Won Index 1995=100 :
KWC/((94099.8+97151+95942.6+95496)/4)*100

NETGDPRY: HK GDP less Government Expenditures and Public Construction at 1990 prices (year on year change)

OCGDPV : OECD GDP vol index 1995=100

OCGDPVRY : (OCGDPV-OCGDPV(-4))/OCGDPV(-4)*100

UKCPI : UK CPI index 1995=100

UKEXPV : UK Export Vol Index 1995=100

UKEXPVRY : (UKEXPV-UKEXPV(-4))/UKEXPV(-4)*100

UKRE : UKCPI/UKWCI

UKRERY : (UKRE-UKRE(-4))/UKRE(-4)*100

UKWC : The price of WCU in Pound

UKWCI : The price of WCU in Pound Index 1995=100 :
UKWC/((75.6+80.7+78.7+80.1)/4)*100

USCPI : USCPI index 1995=100

USEXPV : United State Export Vol Index 1995=100
USEXPVRY : (USEXPV-USEXPV(-4))/USEXPV(-4)*100

USRERY : (USRE-USRE(-4))/USRE(-4)*100

USWC : The price of WCU in US dollar

USWCI : The price of WCU in US dollar Index 1995=100 :
USWC/((122+128.2+124.9+123.3)/4)*100